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Objectives

• Apply Automatic Differentiation of Fortran (ADIFOR),
version 3.0, to codes of interest for NASA

• Demonstrate ADIFOR 3.0 automatic adjoint generation
capability in:
– Aerodynamic Sensitivity Analysis (wing grid generation +

computational fluid dynamics)

– Aerodynamic Shape Optimization (Aerodynamic Sensitivity
Analysis + gradient-based optimization)

– Aerodynamic Control Effectiveness Analysis
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ADIFOR 3.0 from Rice University
• Forward mode (ADIFOR)

• Chain rule of calculus

• Forward propagation of
derivatives through the code

• Best for more dependent than
independent variables

• Forward mode second derivatives

• Reverse Mode (“ADJIFOR”)

• Discrete adjoint formulation

• Backward propagation of
adjoints through the code

• Best for more independent than
dependent variables
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Aerodynamic Sensitivity Analysis
Geometry and Grid Generation

• Simple Fortran wing geometry and grid generation code
(MYGRID) created for ADIFOR studies
– Swept, tapered transport-like wing planforms
– NACA four digit airfoil series wing sections
– Single-block grids generated; split for parallel flow solver execution
– Grid quality was low in consideration
– Many shape design variables (DV) desired for adjoint studies

• ADIFOR 3.0 generated MYGRID.ADJ code computes exact
surface and volume grid adjoints



Aerodynamic Sensitivity Analysis
Computational Fluid Dynamics (CFD)

• CFL3D code by Thomas, Rumsey, and Biedron of NASA LaRC
– Iteration required to solve the Euler / Navier-Stokes flow equations

in conservation form
– Numerous grid, solver, and convergence acceleration options
– Sequential and parallel code versions used

• ADIFOR 3.0 generated CFL3D.ADJ code computes the exact
lift-to-drag ratio (wing efficiency) adjoint
– Initial differentiation excluded the viscous flow modeling routines
– Automatically generated code required enormous disk storage (33GB)

• The manually implemented Iterated Reverse Mode (IRM) reduces
disk storage by saving only the converged “steady-state” solution
information



Aerodynamic Sensitivity Analysis
Wing Design Variables (DVs) Definition

Planform DVs: X, Y, Z of each leading edge
Location and each section chord (c)
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Up to 21
wing sections

Section DVs: maximum thickness (tmx),
maximum camber (cmx), x-location of maximum
camber (xcm), and twist angle (tws) for each section



Aerodynamic Sensitivity Analysis
Demonstrational Problem

• Volume grid sizes: 425, 2673, 18785, and 276705 points

• Point-matched wing grids

• Steady, inviscid, transonic flow around 3-D wing

• One output function (the wing lift-to-drag ratio)

• Up to 168 independent variables (wing shape parameters)

Target Problem

• Volume grid sizes: 400,000 (inviscid wing)

• Patched and overset grids

• Time dependent viscous flow around 3-D aircraft configuration

• Multiple output functions (objective + flow-dependent constraints)

• Up to 500 independent variables (aircraft shape parameters)



Aerodynamic Shape Optimization
Gradient-Based Optimization

• JOPT = CONMIN + first-order Taylor series approximation to the
nonlinear optimization problem, based upon function and gradient

• Optimization objective - minimize -(CL / CD), or
maximize (CL / CD)

• Up to 168 design variables (8 DV per section, 21 wing sections)

• DV bounds and optimization move limits imposed

• Unconstrained optimizations and geometry / grid generation
executed on workstation

• Aerodynamic function and gradient execution on up to 33
processors of a NASA Ames SGI Origin 2000



Aerodynamic Shape Optimization
Optimization Flowchart
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Aerodynamic Shape Optimization
Planform and Thickness Optimization Results
M = 0.84, = 3.06 degrees, 276705 grid points,

21 wing sections, 9 optimization cycles
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Aerodynamic Control Effectiveness Analysis
Computational Fluid Dynamics (CFD)

• PMARC code from NASA Ames Research Center
– Iteration required to solve potential flow equations
– Inviscid, irrotational, and incompressible flow
– Boundary layer and compressible flow corrections available; not used
– Full 3-D aircraft configuration modeled

• ADIFOR 3.0 generated PMARC.ADJ code computes the exact
adjoints of three body axis moments with respect to thousands of
discrete surface shape changes

• “Black-box” automatic adjoint code generation
– New ADIFOR 3.0 user trained and generating code within days
– Execution through entire iteration process
– No IRM techniques employed
– Manageably large disk file generated



Aerodynamic Control Effectiveness Analysis
Lockheed-Martin Tactical Aircraft Systems

Innovative Control Effectors (ICE) Configuration



Aerodynamic Control Effectiveness Analysis
Lockheed-Martin Tactical Aircraft Systems

Innovative Control Effectors (ICE) Configuration

AIAA Paper 99-3136 discusses derivatives of forces and moments 
with respect to angle of attack ( and angle of sideslip (  

Consider derivatives of body axis
moments with respect to
surface shape changes



Aerodynamic Control Effectiveness Analysis
Derivative Definition

Xn
(1353)

Sensitivities
– Derivatives of pitch, roll, and yaw moment coefficients

with respect to a displacement of 1353 discrete surface
grid points normal to the surface

– Coarse resolution surface grid sensitivities interpolated
over the configuration for plotting
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Aerodynamic Control Effectiveness Analysis
Pitch Control Effectiveness Sensitivity Contours

(Incompressible Flow, =4.39)
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Most Promising Designs (Used in Control Law Simulation)



Concluding Remarks

• ADIFOR 3.0 automatically generated adjoint code has been used
in aerodynamic sensitivity analyses, aerodynamic shape
optimization, and a control effectiveness analysis at NASA LaRC

• ADIFOR 3.0 generated CFL3D.ADJ adjoint code requires the
execution time of about 6 to 20 function evaluations

• The Iterated Reverse Mode (IRM) technique significantly reduces
the computer disk storage of adjoint code for iterative solutions

• ADIFOR 3.0 generated CFL3D.ADJ adjoint code only requires
about Kbytes of RAM and about 32 Kbytes disk per grid point;
enables target problem to be solved on moderate parallel computer

• Use of ADIFOR 3.0 generated adjoint sensitivities enabled the
development of an interactive control selection and evaluation tool


